If one looks at the Wifi signal quality reported by a variety of Linux laptops one will see a range of different results even though the machines are the same distance from an access point.
So why is this? Well, some of it has to do with the physical hardware - antennae, diversity, and the wifi silicon too. The other factor to consider is the Wifi driver, which may or may not calculate the signal quality as one would expect.
Bill Moss has written an excellent article describing the method used to calculate the ipw2200 wireless signal quality. It's based on a least squares fit on four data points from calibrations on the Windows XP driver. His article compares the traditional linear model based on the raw hardware provided Received Signal Strength Indicator (RSSI) values to the quadratic model used by the ipw2200 driver. It's an interesting read.
The problem is that the RSSI scale is vendor specific and maximum values vary (e.g. Ciscso uses 101, Atheros 60). RSSI is not associated with any power scale such as mW - it is an arbitrary scale which the hardware provides to a device driver. One should not assume that the values are precise or even very accurate either. There is more detail about this in this posting by Afsaneh Sattari. Hopefully you see the problem.
Looking at drivers in more detail, one finds the calculation varies from driver to driver:
For example Ath9K, Ath5K, Hostap, iwmc3200, rtl8187 and wl12xx drivers (to name but a few) use a linear mapping from the RSSI to calculate the signal quality. iwlwifi uses a least squares fit, rt2x00 uses a scaled down RSSI with a larger mix of TX/RX success and failure weightings. And libertas uses RSSI with a mix of TX success and failure weightings.
So next time you compare your Wifi signal quality on your laptop with somebody else bear in mind there are many factors to make up this meaningless indicator of quality metric!
No comments:
Post a Comment