power-calibrate is a simple tool that hacked up to perform some synthetic loading of the processor, gather the RAPL and CPU stats and using simple linear regression to compute some power related metrics.
In the example below, I run power-calibrate on an Intel i5-3210M (2 Cores, 4 threads) with each test run taking 10 seconds (-r 10), using the RAPL interface to measure power and gathering 11 samples on CPU threads 1..4:
power-calibrate -r 10 -R -s 11 CPU load User Sys Idle Run Ctxt/s IRQ/s Ops/s Cycl/s Inst/s Watts 0% x 1 0.1 0.1 99.8 1.0 181.6 61.1 0.0 2.5K 380.2 2.485 0% x 2 0.0 1.0 98.9 1.2 161.8 63.8 0.0 5.7K 0.8K 2.366 0% x 3 0.1 1.3 98.5 1.1 204.2 75.2 0.0 7.6K 1.9K 2.518 0% x 4 0.1 0.1 99.9 1.0 124.7 44.9 0.0 11.4K 2.7K 2.167 10% x 1 2.4 0.2 97.4 1.5 203.8 104.9 21.3M 123.1M 297.8M 2.636 10% x 2 5.1 0.0 94.9 1.3 185.0 137.1 42.0M 243.0M 0.6B 2.754 10% x 3 7.5 0.2 92.3 1.2 275.3 190.3 58.1M 386.9M 0.8B 3.058 10% x 4 10.0 0.1 89.9 1.9 213.5 206.1 64.5M 486.1M 0.9B 2.826 20% x 1 5.0 0.1 94.9 1.0 288.8 170.0 69.6M 403.0M 1.0B 3.283 20% x 2 10.0 0.1 89.9 1.6 310.2 248.7 96.4M 0.8B 1.3B 3.248 20% x 3 14.6 0.4 85.0 1.7 640.8 450.4 238.9M 1.7B 3.3B 5.234 20% x 4 20.0 0.2 79.8 2.1 633.4 514.6 270.5M 2.1B 3.8B 4.736 30% x 1 7.5 0.2 92.3 1.4 444.3 278.7 149.9M 0.9B 2.1B 4.631 30% x 2 14.8 1.2 84.0 1.2 541.5 418.1 200.4M 1.7B 2.8B 4.617 30% x 3 22.6 1.5 75.9 2.2 960.9 694.3 365.8M 2.6B 5.1B 7.080 30% x 4 30.0 0.2 69.8 2.4 959.2 774.8 421.1M 3.4B 5.9B 5.940 40% x 1 9.7 0.3 90.0 1.7 551.6 356.8 201.6M 1.2B 2.8B 5.498 40% x 2 19.9 0.3 79.8 1.4 668.0 539.4 288.0M 2.4B 4.0B 5.604 40% x 3 29.8 0.5 69.7 1.8 1124.5 851.8 481.4M 3.5B 6.7B 7.918 40% x 4 40.3 0.5 59.2 2.3 1186.4 1006.7 0.6B 4.6B 7.7B 6.982 50% x 1 12.1 0.4 87.4 1.7 536.4 378.6 193.1M 1.1B 2.7B 4.793 50% x 2 24.4 0.4 75.2 2.2 816.2 668.2 362.6M 3.0B 5.1B 6.493 50% x 3 35.8 0.5 63.7 3.1 1300.2 1004.6 0.6B 4.2B 8.2B 8.800 50% x 4 49.4 0.7 49.9 3.8 1455.2 1240.0 0.7B 5.7B 9.6B 8.130 60% x 1 14.5 0.4 85.1 1.8 735.0 502.7 295.7M 1.7B 4.1B 6.927 60% x 2 29.4 1.3 69.4 2.0 917.5 759.4 397.2M 3.3B 5.6B 6.791 60% x 3 44.1 1.7 54.2 3.1 1615.4 1243.6 0.7B 5.1B 9.9B 10.056 60% x 4 58.5 0.7 40.8 4.0 1728.1 1456.6 0.8B 6.8B 11.5B 9.226 70% x 1 16.8 0.3 82.9 1.9 841.8 579.5 349.3M 2.0B 4.9B 7.856 70% x 2 34.1 0.8 65.0 2.8 966.0 845.2 439.4M 3.7B 6.2B 6.800 70% x 3 49.7 0.5 49.8 3.5 1834.5 1401.2 0.8B 5.9B 11.8B 11.113 70% x 4 68.1 0.6 31.4 4.7 1771.3 1572.3 0.8B 7.0B 11.8B 8.809 80% x 1 18.9 0.4 80.7 1.9 871.9 613.0 357.1M 2.1B 5.0B 7.276 80% x 2 38.6 0.3 61.0 2.8 1268.6 1029.0 0.6B 4.8B 8.2B 9.253 80% x 3 58.8 0.3 40.8 3.5 2061.7 1623.3 1.0B 6.8B 13.6B 11.967 80% x 4 78.6 0.5 20.9 4.0 2356.3 1983.7 1.1B 9.0B 16.0B 12.047 90% x 1 21.8 0.3 78.0 2.0 1054.5 737.9 459.3M 2.6B 6.4B 9.613 90% x 2 44.2 1.2 54.7 2.7 1439.5 1174.7 0.7B 5.4B 9.2B 10.001 90% x 3 66.2 1.4 32.4 3.9 2326.2 1822.3 1.1B 7.6B 15.0B 12.579 90% x 4 88.5 0.2 11.4 4.8 2627.8 2219.1 1.3B 10.2B 17.8B 12.832 100% x 1 25.1 0.0 74.8 2.0 135.8 314.0 0.5B 3.1B 7.5B 10.278 100% x 2 50.0 0.0 50.0 3.0 91.9 560.4 0.7B 6.2B 10.4B 10.470 100% x 3 75.1 0.1 24.8 4.0 120.2 824.1 1.2B 8.7B 16.8B 13.028 100% x 4 100.0 0.0 0.0 5.0 76.8 1054.8 1.4B 11.6B 19.5B 13.156 For 4 CPUs (of a 4 CPU system): Power (Watts) = (% CPU load * 1.176217e-01) + 3.461561 1% CPU load is about 117.62 mW Coefficient of determination R^2 = 0.809961 (good) Energy (Watt-seconds) = (bogo op * 8.465141e-09) + 3.201355 1 bogo op is about 8.47 nWs Coefficient of determination R^2 = 0.911274 (strong) Energy (Watt-seconds) = (CPU cycle * 1.026249e-09) + 3.542463 1 CPU cycle is about 1.03 nWs Coefficient of determination R^2 = 0.841894 (good) Energy (Watt-seconds) = (CPU instruction * 6.044204e-10) + 3.201433 1 CPU instruction is about 0.60 nWs Coefficient of determination R^2 = 0.911272 (strong)
The results at the end are estimates based on the gathered samples. The samples are compared to the computed linear regression coefficients using the coefficient of determination (R^2); a value of 1 is a perfect linear fit, less than 1 a poorer fit.
For more accurate results, increase the run time (-r option) and also increase the number of samples (-s option).
Power-calibrate is available in Ubuntu Wily 15.10. It is just an academic toy for getting some power estimates and may be useful to compare compute vs power metrics across different x86 CPUs. I've not been able to verify how accurate it really is, so I am interested to see how this works across a range of systems.